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Abstract—The singular, integro-differential equation for the temperature of a flat plate with internal
energy generation and a fluid flowing over one of its faces, is solved numerically using the method of
iteration. The present results compare well with those of Sparrow and Lin, except for the leading portions
of the plate. It is also seen that the relations given by Cess for similar problems may not give converged
solutions for all cases. The importance of conduction in a plate of high thermal conductivity and of
radiation in cases of laminar flow has also been demonstrated.

NOMENCLATURE

constant, 0 < ¢ < 1;
constants;

constant,0 < b < 1;
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constant for a laminar flow,
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a positive integer;
nondimensional thermal con-

.. k
ductivity parameter, ewa_T?I: ;
dummy variable for z;
Prandtl number of the fluid;
volumetric internal energy
generation in the plate;
convective heat-transfer rate
per unit area at the surface;
Reynolds number based on
length L, (U _L/v);
Reynolds number based on
length x, (U _x/v);
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t, thickness of the plate;

T, temperature of the plate
surface;

T, freestream temperature;

U, freestream velocity of the
fluid;

X, length co-ordinate for the
plate, 0 < x < L;

X, nondimensional plate length,
x/LO< X €1;

Y, nondimensional plate thick-
ness, t/L;

A nondimensional dummy vari-
able for length, (/L0 < Z < X.

Greek letters

B, B(l,m), represents the Beta
function of  and m;

T, I'(l), represents the Gamma
function of (I};

AX, 1/n;

€, hemispherical total emissivity
of the plate;

6.-.8, 1st, 2nd and 3rd derivatives of
nondimensional temperature:;

0., nondimensional temperature,
TJT,:

0, T/T,:

v, kinematic viscosity of the
fluid;

£, dummy variable for the plate
length, 0 € & < x:

G, Stefan-Boltzmann constant,
5680 x 10'2 W/cm? °K*;

P, nondimensional energy gen-
eration parameter, gt/ec T?

v, nondimensional length para-
meter, (k,/k,) [1/N(Re})]
a(XY.

1. INTRODUCTION

WiTH the increasing use of complex thermal
systems, analysis of coupled problems becomes
very important. In most such systems, heat
exchange by only two of the three possible
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modes is considered. Some problems of com-
bined conduction and radiation have been
examined. Viskanta and Grosh [1] analyzed
heat transfer by simultaneous conduction and
radiation in a gas between two parallel plates.
The nonlinear integro-differential equation was
solved numerically by an iterative method after
reducing it to a nonlinear Fredholm integral
equation of the second kind. Howell [2] solved
a combined conduction and radiation problem
by a finite-difference technique, considering the
radiant exchange terms involved in the equation
to be independent of the conduction process.
Doornink and Hering [3] gave numerical
solutions to the transient simultaneous conduc-
tive and radiative transfer in a plane gray medium
bounded by black walls. The singular nonlinear
integro-partial differential equation was solved
by representing its nonlinear function by a
finite expansion in terms of elementary functions.

Other coupled problems of heat transfer have
also received some attention. Oliver and
McFadden [4] solved the problem of simul-
taneous convection and radiation in a laminar
boundary layer on an isothermal flat plate by
reducing the governing equations to the familiar
equation of Blasius. Sparrow and Lin [5]
carried out an analysis to determine the distribu-
tion of surface temperature on a flat plate
undergoing heat exchange with the environment
by both convection and radiation and having an
internal heat source or sink. The nonlinear
integral equation was solved numerically by
changing the integral into a series summation
and using a predictor—corrector numerical tech-
nique. Cess [6, 7] presented an analysis to
determine the influence of radiation heat transfer
upon the forced convection Nusselt number.
Though the solutions presented by Cess do not
converge for all the values of plate length, the
results were used to find under what conditions
radiation may be neglected.

The present study is aimed at determining the
temperature profile of a thermal system involving
internal energy generation and conduction.
Externally, heat is rejected to a flowing trans-
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parent gas by convection and to constant
temperature black surroundings by radiation,
Similar problems are encountered in the design
of aircraft and missiles, hot wire anemometry,
cooling of electronic instruments and other
areas.

2. ANALYSIS OF THE PLATE TEMPERATURE
DISTRIBUTION

Derivation of the governing equations

Consider a very thin flat plate of finite length
and infinite width with uniform internal genera-
tion of thermal energy. Let there be a flow of
transparent gas over one face of the plate and
let the other face be insulated (see Fig. 1). It is
assumed, here, that the thermal conductivity of
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o
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-

X=0
F16. 1. Thermal model, a flat plate.

the plate and other properties of the plate and air
remain constant along the length of the plate,
ie. the properties are independent of any
temperature variation. The plate is takentobe a
gray surface and the surroundings are considered
to be black. The governing energy equation in
the plate is obtained by considering an infinitesi-
mal element dx of the plate at a distance x from
its leading edge. This analysis yields

& =h(T,~ T,

d°T,
kp H—-z—‘ ~— €0/ (T4
where g is the convective heat-transfer rate per
unit area of the surface, h, is the convective
heat-transfer coefficient, T, is the plate tempera-
ture, T is the freestream temperature, k, is the

T3) +aqt, (1)

2057

thermal conductivity of the plate, ¢ is the plate
thickness and g is the volumetric internal energy
generation in the plate.

For a constant freestream flow along a semi-
infinite plate, a solution can be obtained for the
wall temperature for the case of arbitrary
specified surface (convective) heat flux from
Kays’ text [8]. Considering a laminar flow

0623Pr *Re "*J[l
kf

T ~-T

x o«
0

5 37]-4
- (;) :] Qe

where k , Pr and Re are the thermal conductivity,
Prandt] number and Reynolds number respec-
tively and £ is the dummy variable.

Combining the equations (1) and (2) and

further simplifying gives
non= e -G
0
dzT
[kpt @ —eo(Tf ~ T%) + qt] dé.

Define the various dimensionless numbers as
follows:

x ¢
z =X "L- =27
T T,
X o & =
== =0,
L=Y  0SBPrTiReE=C
k__y a _
€T3 L eocT?

Thus the nondimensional governing equation
for the plate temperature in a laminar flow is

X
k Z\¥]°%
= ¥ * R Rt
0= 1+ C,Ex j@ @)]
°

s 0 1+
xl:Y()z——ﬁ+m———N ]dZ. 3)
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This is a singular, integro-differential equation
with a nonlinearity in temperature. The kernel

-7

.0 1+
AL

where

makes the ‘equation singular as it has a weak
singularity at Z = X. But the integral exists
and converges to a finite value. By removing
the singularity, the kernel can be transformed
into a continuous function.

In a similar manner the nondimensional
governing equation for turbulent flow can be
obtained, using a relation given in reference [8].

X
k Z\& 8
— py—-o8 1—-{=
[¢]

. 0 1+ 0
[Yﬂz—ﬁ+—7v————]dz. @

where
C, = 3323 Pr "°Re; %%,

Closed form analytical solutions to equations of
the type (3) and (4) are not known. Therefore
they are solved by employing two numerical
methods.

Simplification obtained on integrating by parts

The equation (3), for laminar flow, can be
rewritten by integrating the right hand side by
parts. Thus,

6,=1+C kxs

lkf

-]
IO )

[

{

Oy ¢
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It can be easily seen that the term
f[1 - @/x)P#) %dz

is equivalent to

ff [1 — (p/X)¥] ¥ dp,

1]

where p is a dummy variable of integration.
Therefore, it is obtained,
1+ @
N

k o .6
RS (G
X
s 0 1+ Z\t]?
(-]
0
. 4620,
(ve. - %)
Z
p*"%
A=) wedh o
[i]

Applying equation (1), for the limiting case of
x -0,

[7.-T.]

x dZ —

Oy et

x—=0
[k, d? T/dx?* — eo(T* — T*) + qt]x - 0
[hx]x—>0 -

For a flat plate, the local convective heat-
transfer coefficient varies as 1/(x)?, so as

or

Again considering the energy equation (1) for
x—0,
d:T,

hx(?:c - Tm)tx-»() = kpi dx2x x-—+0

- GU(T: - T‘;)Ix,_,o + qt‘x..,oa
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or
P

-5
Therefore, equation (5) reduces to

k o 0' 14+
+C—EX* Y =4 - -
B =1 k {( 0" N N)

@ = [on-
Of [1 ‘(%)%]_idpdl}- ©

The finite value of a singular integral of the
type

Y0, =

X
{1 - @/xr1dz

(where 0 <a<1 and 0 < b < 1), can be ob-
tained by making use of a Beta function. Thus,

[[-@T =20 -)

[B(l, m) represents the Beta function of / and m]
Thus when the integral

7
g [1 - @/X)3*] *dp

of equation (6) becomes singular, it can also be

simplified by using a beta function for Z = X.
Thus the simplified governing equation for

the plate temperature in a laminar flow becomes,

k, . _os 0*
0, =14+C,2Xx 503530 x( Y — =
'k, N

X
1+ 4030,
0

L@ e o

If the flow is turbulent, the governing equation
(4) can be simplified by following a procedure

2059
similar to the laminar flow case, to obtain,

0, 1+c’—‘2X ©8.9-827 X | Y, _&
= 'k, N

X
1+ N 4026,
#1559 (- 57)
[}
z EIP 1
(- T ) o
0

Simplification is obtained by expanding in a
series.

The integral in the governing equation (3)
can be simplified by using another method as
iltustrated by Sparrow and Lin [5]. The treat-
ment presented by Sparrow and Lin is only for
the case where the delay factor in the kernel is
of the type [1 — (Z/X)]® and not of the type
[1 — (Z/X)*]7" as used in the present analysis.
The simplification in the form of delay factor
used by Sparrow and Lin was obtained, as
proposed by Hanna and Mayers [9], by using
a superposition of step-changes in surface heat
flux instead of a superposition of step-changes
in surface temperature.

Divide the region between X =0and X = 1
into n equal parts, such that AX = 1/n. Any
value of X in the region 0 < X < 1 can be
denoted by X = (j — 1)AX and Z = (i — 1)AX.
Also, in equation (3) for | Z/X| < 1, the kernel
can be expanded in a binomial series. Thus

i

[[i-(] ez

iAX
1+ 2(2) L 3(2) (2}
1" 73\x) To\x) talx
(i—1)AX
J
+ ] dz = ZFZ(,' ~1) AX[,'"I—_l

i=1

8 it —(i— 1) 2it — (i — 1t
ﬁ (I._l)_} +§ (]'—l)i +...:|,
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where

MX}

L
2 Gi— 1)AX+F

i)

Substitute this in equation (3) and rearrange
some terms, to obtain

k 1+
6, =1 2 X053
=t et a5

S
SICR N

where
1 8if —(i—=1F 2
[ - _ =
Si=7=ita GoiF to
iF— (- 1P 1601'%—(1'—1)‘5+
G—1) 1053 (j— 1)*¢

The equation (9) can be solved numerically for
all values of Z/X < 1. However, for Z/X =1
the equation in the form given is indeterminate.
Once again use is made of beta function and in
place of the summation, the integral is given by,

I -3
Z\E-
- |= dz
-]
0
X -AX
Z\* _%dZ
=X 1-{=
z-x [ o= (3]
[o]
X—-AX
F A _édZ
Fz{3530X— j I:l—— Y) .
[4]
In similar manner, the simplified equation for

the plate temperature in turbulent flow is
obtained, which is,
1+ @
N
i

0. =1+ C,&X°'2[9-827<
x kf
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where
1 80 it — (i — 1)
S =y
e T TR TR T
160 i¥ — (i —
+WLMO_L}?,
567 (- 1)%

For Z = X, again the beta function is used
to solve the integral.

3. DISCUSSION OF THE RESULTS
Comparison of the present results with those avail-
able in the literature

The general procedure to solve the above
simplified governing equations is the method of
iterations. To find a root of the equation
f(x) = 0, the method of iterations is concerned
with the finding of numbers x,, x,, x,,...,S,
which converge to limit S such that the equation
f(x) =0 is satisfied by x = S. Therefore an
initial guess for the temperature profile of the
plate is made. An accurate curve-fitting method
needs to be used, because the temperature
derivatives at the various locations of the plate
length are obtained by differentiating the poly-
nomial representing the assumed temperature
profile. The initial guess for the temperature
profile is then corrected to approach the tem-
perature profile output obtained by the above
numerical procedure. This process is continued
till the input and output temperature profiles
match within a prescribed accuracy to give a
solution to the governing equation. The detailed
numerical program is given in { 10].

The results for the plate temperature in
laminar and turbulent flows are presented in
Figs. 2 and 3 respectively. For comparison,
plots from the results of Sparrow and Lin [5]
and Cess [6] are also shown. The ratio hy, /b e
in the analysis of Sparrow and Lin can be modi-
fied for comparison with the present results. The
ratio hg,p/hyye i @ measure of the relative
strengths of radiative and convective heat
transfer. Therefore,
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heap _ 3511 C &, X3, for laminar flow,
howe N 4
o 10166 C.k, 0. , for turbulent flow.
Nk,

Also the parameter, efesT% of Sparrow and
Lin,isequivalentto (1 + ).

Laminar flow
y = 833x107°
N = 21-554
G = 3163107
K,/ K, N=34-02
Re = 4-922 x 10°

Prgsent gnalysis
~--~ gparrow and Lin [5]
1115 —-—Cess [6,7]

8x

o8l

Fic. 2. Comparison of the plate temperature results in
laminar flow.

From Figs. 2 and 3 it is seen that the results of
Sparrow and Lin give a lower value of the plate
temperature than the present results. The
maximum deviation of about 5 per cent occurs
for turbulent flow near X = 0-2. The deviation
subsequently decreases continuously. Both of
the present methods (equations (7)-(10)) of
solving the governing equation for plate tem-
perature give identical results for all similar
cases. Integration is essentially a summation
process, which ¢xplains the identical nature of
the results given by the present two methods.

2061

Turbulent flow

Y £333x107°
N 86215
cts2-88x107%
1151 Kp/ K N=85- OG
Re= 15 62511 0

Present onalysis

---- Sparrow and Lin [5]
—-—~ Cess [6]

14035 4

09

085

08

FiGg. 3. Comparison of the plate temperature results in
turbulent flow.

Therefore, the two methods have not been
differentiated on the figures. The governing
equations for the plate temperature in laminar
and turbulent flows, equations (25) and (20)
respectively given by Sparrow and Lin [5],
are modified to correspond to the present
analysis, For laminar flow, the analysis of
Sparrow and Lin gives

9—1+h‘“‘”( )—1~h"—‘—°

e \€6T% )~ 3X e

x

A
[ e
[}

R 2
(-BI-5 ;ﬂ}
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Including the conduction term also,

6. =1+3511C, %X” {(17?) + Z
= & i—1\* i}
vd, - ) (1 - (-

(-5 -0 ]

(12)

Similarly, the two equations for turbulent flow
without and with conduction heat transfer
would be,

J
6, = 1 + 10166 C X2 x02 {(Lt% + Z
K, N
i=1

(B3 -6

and

J
0 —1410166C % xo2 J(1+2) 4

(8-

(14)

The results of Sparrow and Lin in Figs. 2 and
3 are the solutions of equations (11) and (13)
respectively by using a predictor-corrector
numerical technique. But it is found that by
using the method of iterations, the results of
equations (11) and (13) are exactly the same as
those for equations (7) or (9) and (8) or (10)
respectively. This is not because of neglecting
conduction terms in equations (11) and (13),
since the conduction term is immaterial for the
small value of thermal conductivity k, used.

The results for N = 0-0, 862 can hardly be
distinguished in the graphs presented here. In
the absence of conduction in the plate and
because radiation heat exchange is negligible
close to the leading edge, convection is the
dominating mode of heat transfer near the
leading edge. For convection, T, oc 1/h,. Thus
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while h_drops asymptotically from a very large
to a finite value, the temperature would ob-
viously show a sharp increase along the corres-
ponding plate length for the case of small values
of thermal conductivity. This effect is not obvious
from the plots of Sparrow and Lin. As shown
in the subsequent figures (i.e. Figs. 4, 7 and 8),
the figures for lower thermal conductivity show
a steeper profile as compared to the curves for
higher thermal conductivity. Therefore even the
results for the boundary condition ¢, = gt
{case of zero thermal conductivity) should show
a sharp increase in temperature close to the
leading edge. Nevertheless, it seems that the
method of iterations with AX = 0-01 and the
predictor—corrector method as employed by
Sparrow and Lin, converge to different results.

Equation (5) of Cess [6] gives the plate
temperature as

9x=1+“1(‘1"+%‘1’2+-~>’

1

where a,, a,,...are the constants and for
laminar flow ¥ is given by

vl ()
k, V\U,
1

NJ(Re,) VX

Therefore, for laminar flow,

_k
kf

o [k 1
b =1+ G0 ['léf, NJRe) VX

2
—8-328(52”1-——\/}{) +] (15)

k, N/(Re;)
and for turbulent flow,
7 k 1
= s -} XO‘2
b =1+ 50273 [k  N(Re,"®

k 1 2
- 142'27(-—2——'——,— Xe'zy + } {16)
k, N(Re,)*® ;

For the plate temperature distribution in a
laminar flow for higher values of ¥, Cess [7]
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has given an alternate approach,

ex=1+bo[1+ﬁw-l+..], (17)

bO
where
b, =01+ &) — 1,
and
b, 02927
b, 41+ dF

With these substitutions, equation (17) becomes
02927 [(1 + &)* — 1]

6, =(1 + @)} —

4 1+ oF
k, N\/(Re,)

Results from equations (15), (16) and (18) are
also shown in Figs. 2 and 3. The results of
equation (15) converge only up to a small value
of X around 0-1-0-2. The plots of equation (18)
produce results which are physically consistent
for @ = 05 and 10, for X = 02-1-0, but fail
to give satisfactory results for ¢ = — 0-5. For
turbulent flow also the equation (16) gives
results which differ appreciably from the present
results and those given by Sparrow and Lin.
These plots show a steeper increase in the plate
temperature near the leading edge for the same
relations given by Cess [6] than the plots
presented by Sparrow and Lin.

For both laminar and turbulent flows, the
present two methods and the relations given by
Sparrow and Lin, solved by using the present
numerical technique give identical results, maxi-
mum deviation being less than 1 per cent.
Therefore, to reduce the computer time, for all
the curves presented henceforth, the method of
iterations is used to solve the simpler equations
(12) and (14), for laminar and turbulent flows
respectively

Effect of various parameters
In most of the previous analyses, the conduc-
tion heat flow in the plate has been neglected.

Laminar flow

Y = 0:001667

¢ = 73.05

¢, » 31631073

30 N =86-215
K,/ Ky N=8:506 43108
286215
=17243
2-6 234486
251729
=8621'5
2.2
ax
1.8
1.4 ]
Io T T T T T 1
[¢] 02 0-4 06 0-8 -0

X

F1G. 4. Effect of thermal conductivity parameter N on the
temperature of 0:254 mm thick plate in laminar flow.

Laminar flow

Y =0001667
¢ 273-05
N =1724-3
1 ¢ =3163x107°
K, /K¢ N = 0425

06 08 1.0
X

o 02

~--~-— Corrected profile

5.0
8x,8x

0-0

6x

-10:0 |

-15:0 |

-200 |

FiG. 5. Correction to be applied in the determination of 8.
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Laminar flow
Y = 0000333
N = 86-215

¢, = 3163x107°

60, K, /Ke N =0-425
—--~ Without radiation //
5:54 — with radiation S
,/
,/
5.0 $ =500,
/7
/
/
4:5 ] //
/
/
//
4.0 | ,
/
/
,/
6x 3-5] /, -
/ ¢$=250_-"
L

0 0-2 04 06 08 1-0

FIG. 6. Effect of the parameter ® and radiation on the plate
temperature in laminar flow.

Figure 4 shows the plate temperature for a wide
range of thermal conductivity parameter N.
It can be seen that the higher values of N bring
down the plate temperature appreciably at
smaller values of X, but with subsequent
increase in X the effect of N continuously
decreases. For a 0-254 mm (Y = 0-00166) thick
copper plate (N ~ 1724-3) neglecting the ther-
mal conductivity would cause an error of 62
per cent in the plate temperature at a location
X = 0-05 from the leading edge. For an infinitely
large value of thermal conductivity, éx would
approach zero, ie. Gx would tend to a constant
value.
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Thus, in order to study the effect of thermal
conductivity, numerical determination of GY
becomes very critical. Because of the constant
internal energy generation in the plate, its
temperature has to increase with X. This means
that 6, can never be negative, its value decreasing
with x and becoming equal to zero in the
extreme case. Therefore Gx cannot have a point
of inflection and its value has to approach close
to zero at X = 1. The usual method of deter-
mining §_ by differentiating the curve fit of the
temperature profile is susceptible to some
errors, which in turn may cause errors in the
calculated temperature. This effect is shown in
Fig. 5 by a solid curve in the range X = 0-7-1-0.
Hence §_is forced to follow a physically more
realistic profile as shown by the dashed line in
Fig. 5.

Figure 6 shows the effect of changing the para-
meter @ and also the plate temperature with and
without inclusion of the radiative transfer term.
Changing ¢ essentially means changing either

Laminar flow

Y <0000333
¢ 1461
€ =3163x107°
. Without
Kp/KrN=0 425 radiation
13
N=86215
gx 12y 86215
=17243
234486
=5172:9
=8621'5

10

[¢] oz 04 06 08 -0

FiG. 7. Effection of the parameter N and radiation on the
plate temperature in laminar flow.
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internal energy generation or the plate thickness
at low thermal conductivity. Thus, as would be
expected, an increase in ¢ increases the plate
temperature as shown in Fig. 6. This figure also
illustrates that radiation becomes more and
more important with the increase in the plate
temperature, which is caused by the higher
volumetric energy input.

Turbulent flow
Y = 0000333
¢ = 1461
"4, cr= 288x107*
KplKr N =0-425

Without radiation

N=86215
=862:15

i-0

4 T T Y 1
o] o2 o4 o8 o8 [Re]
X

Fi1:. 8. Effect of the parameter N and radiation on the plate
temperature in turbulent flow.

Figures 7 and 8 present the relative importance
of conduction and radiation heat transfer for
laminar and turbulent flows, respectively. The
maximum error caused by neglecting the con-
duction heat transfer in a 0-0508 mm thick plate
with N = 17243 is about 10 per cent, as shown
in Fig. 7. For the same volumetric energy
generation, corresponding error for a 0254 mm
thick plate from Fig. 4, is 62 per cent. Absence of
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radiation could mean a maximum increase of
about 43-5 per cent in the plate temperature in a
laminar flow, the maximum increase occurring
at the trailing edge of the plate when N = 86215,
The corresponding increase in a turbulent flow
flow is only about 5-55 per cent. This emphasizes
the relative importance of radiative heat transfer
in laminar and turbulent flows. Clearly, in tur-
bulent flow convective heat transfer is much
more dominant. Cess [6] has also reported that
above a turbulent Reynolds number of 3-5 x 10°
the error caused by neglecting radiation effects
would be less than 5 per cent.

4. CONCLUSIONS

The present work presents solutions for the
plate temperature, where conduction heat trans-
fer along the length of the plate becomes
important. These are the cases of plates having
a higher value of thermal conductivity and
certain cases of thicker plates, where the
assumption of constant temperature across
the plate thickness can be maintained. This
paper also gives solutions for integral equations
which contain a delay factor of the more general
type [1 =(Z/X)]™® in the kernel, though
these solutions show little difference over the
results using the delay factor of the type
[t — (Z/X)]"* as done by Sparrow and Lin.

The present results obtained by using the
method of iterations, compare within 5 per cent
of the results of Sparrow and Lin. Due to a
sharp decrease in the value of convective heat
transfer coefficient on moving away from the
leading edge of the plate, there has to be a sharp
increase in the plate temperature, unlike the
plots of Sparrow and Lin. The relations given
by Cess for plate temperature are not physically
consistent over all ranges of parameters, as they
do not give a constant increase (or an asymptotic
approach to a constant value) in temperature in
some cases. The neglect of radiation heat
transfer in turbulent flow does not cause as
severe an error as in laminar flow, a phenomenon
also shown by Cess.
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DETERMINATION DE LA TEMPERATURE D'UNE PLAQUE DANS LE CAS D’ECHANGE DE
CHALEUR COMBINE PAR CONDUCTION, CONVECTION ET RAYONNEMENT

Résumé—On a résolu numériquement par la méthode itérative I'équation intégro-différentielle singuliére

pour la température d’une plaque plane avec une génération d’énergie interne et un fluide qui s’écoule

sur I'une de ses faces. Les résultats présentés se comparent bien & ceux de Sparrow et Lin, sauf pour la

région du bord d’attaque de la plaque. On voit aussi que les relations données par Cess pour des problémes

similaires risquent de ne pas donner de solutions convergentes dans tous les cas. L'importance de la

conduction dans une plaque & conductivité thermique élevée et du rayonnement dans le cas d’écoulement
similaire a'ét¢ démontrée.

BESTIMMUNG DER PLATTENTEMPERATUR IM FALL DES KOMBINIERTEN
WARME-AUSTAUSCHS DURCH LEITUNG, KONVEKTION UND STRAHLUNG.

Zusammenfassung—Die Integro-Differentialgleichung fiir die Temperatur einer ebenen Platte mit inneren
Wirmequellen, wobei ein Fluid iiber eine Plattenfliche stromt, wird numerisch durch Iteration gelost. Die
Ergebnisse lassen sich gut mit denen von Sparrow und Lin vergleichen, auBer fiir den Plattenanfang. Man
sieht auch, daB die Gleichung von Cess fiir dhnliche Probleme nicht fiir alle Fille {ibereinstimmende
Losungen ergibt. Auch wurde die Wichtigkeit der Leitung in einer Platte von hoher thermischer
Leitfahigkeit und die der Strahlung im Fall einer laminaren Strémung gezeigt.

ONPEAEJEHUE TEMIIEPATYPHI IJIACTUHBI B CAVYAE CIOHHOIO
TEIJIOOBMEHA TENJIOIIPOBOJHOCTHIO, KOHBEKRIIUEN U PAGVAIMNER

AnBoramEa—MeTogOM WTepauuit NpoBENeHO YMCIeHHOE pelleHHe CHHIYIAPHOTO MHTErpo-
muddepeRIMANLHOTO YPABHEHUA AJIA TeMIPATYypHl MIACTHHEL ¢ BHYTPEHHMM HCTOYHHKOM
SHEPTEH NIpH OGTeKaHUY ee C OTHON CTOPOHH. PesynbTaTH 5Tol pabOTH XOPOMIO COTIaCYIOTCH
¢ gammBMu Cnsppoy u Jluna 3a NCKiINOYeHHeM NepegHell KPOMKHM MIACTHHEH. YCTAHOBIEHO,
4TO COOTHOIIEHUA, npuBeneHHse CeccoM MAIIA 3alad TAKOrO THUIA He BCETAA JAOT CXOAAMUEcH
peuienns. [loKasaHo, 9TO 1A MIIACTHHEI C BHCOKKM KOIQPUIMEHTOM TENIONPOBOXHOCTY U DK
HANMYNM UBJIyYeHMsA B CJAyYasdxX JAMHHADHOr0 OOTeKAHHA TENJIONPOBOAHOCTb Mrpaer
CYLIECTBEHHYIO POIIb.



