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Abstra&--The singular, integro-differential equation for the temperature of a flat plate with internal 
energy generation and a fluid flowing over one of its faces, is solved n~e~~lly using the method of 
iteration. The present results compare well with those of Sparrow and Lin, except for the Ieading portions 
of the plate. It is also seen that the relations given by Cess for similar problems may not give converged 
solutions for all cases. The importance of conduction in a plate of high thermal conductivity and of 

radiation in cases of laminar flow has also been demonstrated. 
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a positive integer; 
nondimensional thermal con- 

ductivity parameter, EO$‘SL ; 
00 

dummy variable for z; 
Prandtl number of the fluid; 
volumetric inter& energy 
generation in the plate; 
convective heat-transfer rate 
per unit area at the surface; 
Reynolds number based on 
length L, (&L/v); 
Reynolds number based on 
length x, (Umx/v); 
series for a laminar flow, 
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thickness of the plate; 
temperature of the plate 
surface ; 
freestream temperature; 
freestream velocity of the 
fluid; 
length co-ordinate for the 
plate, 0 < x < L; 
nondimensional plate length, 
x/L,OgX<l, 
nondimensional plate thick- 
ness, t/L; 
nondimensional dummy vari- 
able for length, l/L, 0 G 2 d X. 

/?(I, m>, represents the Beta 
function of I and m; 

F”(l), represents the Gamma 
function of (I); 

l/n; 
hemispherical total emissivity 
of the plate; 
lst, 2nd and 3rd derivatives of 
nondimensional temperature; 
nondimensional temperature, 
qjT.g 
q/Tm: 
kinematic viscosity of the 
fluid ; 
dummy variable for the plate 
length, 0 ,< 5 < X; 
Stefan-Boltzmann constant, 
5680 x lOi W/cm2 X4; 
nondimensional energy gen- 
eration parameter, qt/a.Sz ; 
nondimensional length para- 
meter, (k,lk,) C lIN(Re,) ] 
a( X)b. 

1. INTRODUCTION 

Wrm the increasing use of complex thermal 
systems, analysis of coupled problems becomes 
very important. In most such systems, heat 
exchange by only two of the three possible 

modes is considered. Some problems of com- 
bined conduction and radiation have been 
examined. Viskanta and Grosh [l J analyzed 
heat transfer by simultaneous conduction and 
radiation in a gas between two parallel plates. 
The nonlinear integro-differential equation was 
solved numerically by an iterative method after 
reducing it to a nonlinear Fredholm integral 
equation of the second kind. Howell [2] solved 
a combined conduction and radiation problem 
by a finite-difference technique, considering the 
radiant exchange terms involved in the equation 
to be independent of the conduction process. 
Doornink and Hering [3] gave numerical 
solutions to the transient simultaneous conduc- 
tive and radiative transfer in a plane gray medium 
bounded by black walls. The singular nonlinear 
integro-partial differential equation was solved 
by representing its nonlinear function by a 
finite expansion in terms of elementary functions. 

Other coupled problems of heat transfer have 
also received some attention. Oliver and 
McFadden [4] solved the problem of simul- 
taneous convection and radiation in a laminar 
boundary layer on an isothermal flat plate by 
reducing the governing equations to the familiar 
equation of Blasius. Sparrow and Lin [5] 
carried out an analysis to determine the distribu- 
tion of surface temperature on a flat plate 
undergoing heat exchange with the environment 
by both convection and radiation and having an 
internal heat source or sink. The nonlinear 
integral equation was solved numerically by 
changing the integral into a series summation 
and using a predictor-corrector numerical tech- 
nique. Cess [6, 73 presented an analysis to 
determine the influence of radiation heat transfer 
upon the forced convection Nusselt number. 
Though the solutions presented by Cess do not 
converge for all the values of plate length, the 
results were used to find under what conditions 
radiation may be neglected. 

The present study is aimed at determining the 
temperature profile of a thermal system involving 
internal energy generation and conduction. 
Externally, heat is rejected to a flowing trans- 
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parent gas by convection and to constant 
temperature black surroundings by radiation. 
Similar problems are encountered in the design 
of aircraft and missiles, hot wire anemometry, 
cooling of electronic instruments and other 
areas. 

2. ANALYSIS OF THE PLATE TEMPERATURE 
D~T~~ION 

~eriva~i5n 5f the governing equations 

Consider a very thin flat plate of finite length 
and infinite width with uniform internal genera- 
tion of thermal energy. Let there be a flow of 
transparent gas over one face of the plate and 
let the other face be insulated (see Fig. 1). It is 
assumed, here, that the thermal conductivity of 

x=0 x= I 

FIG. 1. Thermal model, a flat plate. 

the plate and other properties of the plate and air 
remain constant along the length of the plate, 
i.e. the properties are independent of any 
tem~ratu~ variation. The plate is taken to be a 
gray surface and the surroundings are considered 
to be black. The governing energy equation in 
the plate is obtained by considering an infinitesi- 
mal element dx of the plate at a distance x from 
its leading edge. This analysis yields 

(i:’ = k,(T - T=) X 
2 

= k,tixT ----f - l T: - T*,) + qt, (1) 

where #! is the convective heat-transfer rate per 
unit area of the surface, h, is the convective 
heat-transfer coefficient, T, is the plate tempera- 
ture, T, is the freestream temperature, kl, is the 

thermal conductivity of the plate, t is the plate 
thickness and q is the volumetric internal energy 
generation in the plate. 

For a constant freestream flow along a semi- 
infinite plate, a solution can be obtained for the 
wall temperature for the case of arbitrary 
specified surface (convective) heat flux from 
Kays’ text [8]. Considering a laminar flow 

_I 9 -3 

01 x 
4;’ dt, (2) 

where kf, Pr and Re are the thermal conductivity, 
Prandtl number and Reynolds number respec- 
tively and t is the dummy variable. 

Combining the equations (1) and (2) and 
further simplif~ng gives 

Define the various dimensionless numbers as 
follows: 

X 
-=L 
L 

X 

T 
X=8 
Tm x 

t 
-=: 
L 

Y 0623 Pr-* Ret* = C, 

k 
---@-=:N l T3,L 

Thus the nondimensional governing equation 
for the plate temperature in a laminar flow is 

’ (3) 
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This is a singular, integro-differential equation It can be easily seen that the term 
with a nonlinearity in temperature. The kernel 

j[l - (Z/X)*]-+ dZ 

is equivalent to 

where [ [I - (P/X)*] - * dp> 

where p is a dummy variable of integration. 
Therefore, it is obtained, 

makes the equation singular as it has a weak 
singularity at Z = X. But the integral exists 
and converges to a finite value. By removing 
the singularity, the kernel can be transformed 
into a continuous function. 

In a similar manner the nond~ensional 
governing equation for turbulent flow can be 
obtained, using a relation given in reference [S]. 

yo _!!i+‘+@ dZ 
z 

N N 1 ’ (4) 

where 

C t = 3.323 ~~-0.6 me-0.8 L . 

Closed form analytical solutions to equations of 
the type (3) and (4) are not known. Therefore 
they are solved by employing two numerical 
methods. 

Simplification obtained on integrating by parts 
The equation (3), for laminar flow, can be 

rewritten by integrating the right hand side by 
parts. Thus, 

Applying equation (1), for the limiting case of 
x -+ 0, 

CT - c31x-ro 

= [k,t d2T/dx2 - EB(T~ - 1”;) + qt]x --+ 0 

tklX4 

For a flat plate, the local convective heat- 
transfer coefficient varies as l/(x)*, so as 

Again considering the energy equation (1) for 
x --+ 0, 
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Therefore, equation (5) reduces to 

The finite value of a singular integral of the 

type 

a Cl - wvl-b~ 

(where 0 < a < 1 and 0 < b < l), can be ob- 
tained by making use of a Beta function. Thus, 

/[l - ($$j-bdZ =:/I(1 - b,;). 

[fl(f, m) represents the Beta function of I and m] 
Thus when the integral 

[ Cl - f~/X)*l-~ dp 
of equation (6) becomes singular, it can also be 
simplified by using a beta function for Z = X. 

Thus the simplified governing equation for 
the plate temperature in a laminar flow becomes, 

x /[I - ($]-+dpdZ}. (7) 

0 

If the flow is turbulent, the governing equation 
(4) can be simplified by following a procedure 

similar to the laminar flow case, to obtain, 

Simplification is obtained by expanding in a 
series. 

The integral in the governing equation (3) 
can be simplified by using sylother method as 
illustrated by Sparrow and Lin [S]. The treat- 
ment presented by Sparrow and Lin is only for 
the case where the delay factor in the kernel is 
of the type [l - (Z/X)]-” and not of the type 
[l - (Z/XT] -b as used in the present analysis. 
The simplification in the form of delay factor 
used by Sparrow and Lin was obtained, as 
proposed by Harma and Mayers [9], by using 
a superposition of step-changes in surface heat 
flux instead of a superposition of step-changes 
in surface temperature. 

Divide the region between X = 0 and X = 1 
into n equal parts, such that AX = l/n. Any 
value of X in the region 0 < X < 1 can be 
denoted by X = (j - l)AX and Z = (i - l)AX. 
Also, in equation (3) for 1 Z/XI < 1, the kernel 
can be expanded in a binomial series. Thus 

/$I -($)+I-‘dZ=t 

0 i= 1 

+...]dZ=$&- I)AXL+ 

i=l 

+ J_if 

- 

(i 

- 

1)’ 2i) 

- - 

+ (i I)* 
21 0’ - 1)s g (+I)* 

+*** 1 3 
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where 

MANOHAR S. SOHAL 

Substitute this in equation (3) and rearrange 
some terms, to obtain 

(9) 

where 

i=l 

ii - (i - 1)’ , 160 i? _ (i _ 1)1: 

x (j-1) f= (j-1)1: +... 

The equation (9) can be solved numerically for 
all values of Z/X < 1. However, for Z/X = 1 
the equation in the form given is indeterminate. 
Once again use is made of beta function and in 
place of the summation, the integral is given by, 

]Fz[l - (;)+I-i,Z 

0 
X-AX 

Z=X j F$ -(;)+I-‘dZ 

0 

X-AX 

+ F4353OX - 1 [I -(;)+l+dZ}. 

0 

In similar manner, the simplified equation for 
the plate temperature in turbulent flow is 
obtained, which is, 

+ &Yt$ -g&i]. (10) 

i=l 

where 

80 i :i 

+171 

_ (i _ 1)‘: 

(j- 1): 

For Z = X, again the beta function is used 
to solve the integral. 

3. DISCUSSION OF THE RESULTS 

Comparison of the present results with those avail- 

able in the literature 

The general procedure to solve the above 
simplified governing equations is the method of 
iterations. To find a root of the equation 
f(x) = 0, the method of iterations is concerned 
with the finding of numbers x0, x1, x2,. . . , S, 
which converge to limit S such that the equation 
f(x) = 0 is satisfied by x = S. Therefore an 
initial guess for the temperature profile of the 
plate is made. An accurate curve-fitting method 
needs to be used, because the temperature 
derivatives at the various locations of the plate 
length are obtained by differentiating the poly- 
nomial representing the assumed temperature 
profile. The initial guess for the temperature 
profile is then corrected to approach the tem- 
perature profile output obtained by the above 
numerical procedure. This process is continued 
till the input and output temperature profiles 
match within a prescribed accuracy to give a 
solution to the governing equation. The detailed 
numerical program is given in [lo]. 

The results for the plate temperature in 
laminar and turbulent flows are presented in 
Figs. 2 and 3 respectively. For comparison, 
plots from the results of Sparrow and Lin [5] 
and Cess [6] are also shown. The ratio h,,dh,,, 
in the analysis of Sparrow and Lin can be modi- 
fied for comparison with the present results. The 
ratio h,,,,/h,,, is a measure of the relative 
strengths of radiative and convective heat 
transfer. Therefore, 
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kRm 3511 c k 
- = 
h 

r -iz X0.5, for laminar flow, 
UHF N % 

10.166 C k 
= ‘-A Xo‘2, for turbulent flow. 

N kf 

Also the parameter, e/cuTz of Sparrow and 
Lin, is equivalent to (1 + G). 

Lomrnar tlow 

Y = 6.33 x w5 

N = 21.554 

1.2, c, = 3.163 x c3 

1 
i,/ Kr N= 34.02 
R”L = 4.922 x IO 

4 - Present analysis 

---- Sparrow and Lin [Sf 

I.15 -_- Cess E6.71 

FIG. 2 Comparison of the plate temperature results in 
laminar flow. 

Turbulent flow 
I.2 

1 Y =3.33x 10-5 
N l 8.62 I5 

cr. 2.08 x 10-4 

I.15 

i 

K,/KrN-85.06 
f?q- IS.625 x 104 

- Present analysis 

---- Sparrow and Ltn [5] 

-.- Cess 

----__ 
8X 

8 c I.0 

O.El 

FIG. 3. Comparison of the plate temperature 
turbulent flow. 

results in 

Therefore, the two methods have not been 
differentiate on the figures. The governing 
equations for the plate temperature in laminar 
and turbulent flows, equations (25) and (20) 
respectively given by Sparrow and Lin [5], 
are modified to correspond to the present 
analysis, For lam&r flow, the analysis of 
Sparrow and Lin gives 

From Figs. 2 and 3 it is seen that the results of 
Sparrow and Lin give a lower value of the plate 
temperature than the present results. The 
maximum deviation of about 5 per cent occurs 
for turbulent flow near X = O-2. The deviation 
subsequently decreases continuously. Both of 
the present methods (equations (7)-(10)) of 
solving the governing equation for plate tem- 
perature give identical results for all similar 
cases. Integration is essentially a summation 
process, which explains the identical nature of 
the results given by the present two methods. 

x 

s e x o (1 - Z/X)SdZ’ 

= 1 -I- 3511 C,$X I o-‘{(> + 2 

i=l 
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Including the conduction term also, 

8, = 1 -t- 3.511 c, 2 x0+ 
f I(‘?)+$ 

i=l 

x pi-$)[(I -!+(l _A$+]~. 

Similarly, the two equations for turbulent flow 
without and with conduction heat transfer 
would be, 

e, = 1 + 10.166 

i=l 

x (-$)[(I -!yy-(1 -;$I} (13) 

and 

8, = 1 + 10.166 

i=l 

(14) 

The results of Sparrow and Lin in Figs. 2 and 
3 are the solutions of equations (11) and (13) 
respectively by using a predictor-corrector 
numerical technique. But it is found that by 
using the method of iterations, the results of 
equations (11) and (13) are exactly the same as 
those for equations (7) or (9) and (8) or (10) 
respectively. This is not because of neglecting 
conduction terms in equations (11) and (13), 
since the conduction term is immaterial for the 
small value of thermal conductivity k, used. 

The results for N = 0.0, 86.2 can hardly be 
distinguished in the graphs presented here. In 
the absence of conduction in the plate and 
because radiation heat exchange is negligible 
close to the leading edge, convection is the 
dominating mode of heat transfer near the 
leading edge. For convection, T, cc I/h,. Thus 

while h, drops asymptotically from a very large 
to a finite value, the temperature would ob- 
viously show a sharp increase along the corres- 
ponding plate length for the case of small values 
of thermal conductivity. This effect is not obvious 
from the plots of Sparrow and Lin. As shown 
in the subsequent figures (i.e. Figs. 4, 7 and 8), 
the figures for lower thermal conductivity show 
a steeper profile as compared to the curves for 
higher thermal conductivity. Therefore even the 
results for the boundary condition 4: = qt 
(case of zero thermal conductivity) should show 
a sharp increase in temperature close to the 
leading edge. Nevertheless, it seems that the 
method of iterations with AX = 0.01 and the 
predictor-corrector method as employed by 
Sparrow and Lin, converge to different results. 

Equation (5) of Cess [6] gives the plate 
temperature as 

ex= i +a, ( r+fp~z+... , > 
where ai, u2,. . . are the constants and for 
laminar flow Y is given by 

k 1 

= $ N,/(Re,) 
Jx- 

Therefore, for laminar flow, 

@ 

[ 
?I? 1 

ex = ’ + 0.4059 k, N&Red (JX) 

- 8.328 tk k NJ;Re,) JXY + . . .I. (15) 
/ 

and for turbulent flow, 

For the plate temperature distribution in a 
laminar flow for higher values of Y, Cess [7] 
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has given an alternate approach, 

8,=1+b, 1+++..., [ 1 (17) 
0 

where 

6, = (1 + @)* - 1, 

and 

b A=_ 0.2927 

60 
4(1 + @)** 

With these substitutions, equation (17) becomes 

0.2927 [(l + @)* - l] 
8, = (1 + @)* - ---4-- 

(1 + @)+ 

x f4r%k) + 

% JX **** (18) 

Results from equations (15), (16) and (18) are 
also shown in Figs. 2 and 3. The results of 
equation (15) converge only up to a small value 
of X around 0.1-O-2. The plots of equation (18) 
produce results which are physically consistent 
for @ = 0.5 and 1.0, for X = 0.2-1.0, but fail 
to give satisfactory results for @ = - 0.5. For 
turbulent flow also the equation (16) gives 
results which differ appreciably from the present 
results and those given by Sparrow and Lin. 
These plots show a steeper increase in the plate 
temperature near the leading edge for the same 
relations given by Cess [6] than the plots 
presented by Sparrow and Lin. 

For both laminar and turbulent flows, the 
present two methods and the relations given by 
Sparrow and Lin, solved by using the present 
numerical technique give identical results, maxi- 
mum deviation being less than 1 per cent. 
Therefore, to reduce the computer time, for all 
the curves presented henceforth, the method of 
iterations is used to solve the simpler equations 
(12) and (14), for laminar and turbulent flows 
respectively 

Effect of various parameters 
In most of the previous analyses, the conduc- 

tion heat flow in the plate has been neglected. 

Laminor flow 

Y . 0.001667 

9 * 73.05 
3.0 c, = 3.163 x lo-3 

1 Kp/Kf N-6.506 
N = 66.215 

=431.06 

I '662.15 
= 1724.3 

2.6 * 3446.6 
‘5172.9 

n6621.5 

2.2 

9x 

I.8 

1.4 

I.0 

0 0.2 0.4 d.6 o:a I:0 
X 

FIG. 4. Effect of thermal conductivity parameter N on the 
temperature of 0.254 mm thick plate in laminar flow. 

Lomlnar flow 

Y = 0.001667 

9 e73.0.5 
N = 1724-3 

3’01 c, = 3,163 x lO-3 

0 0,2 0.4 0.6 0,6 I,0 
X 

5.0. 
---- Corrected profile 

t&&ix 

_6,0.y~l.o 

0.0 
0.2 

-10.0 

-15.0 

-20.0 

v 

FIG. 5. Correction to be applied in the determination of 8,. 
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6.0 

A’ = 86.215 

C, = 3. 163x lO-3 

Kp /Kf N = 0.425 

5.5 
Without radiation /’ ____ 

I’ 
- With radiation ,/ 

/ , 

5.0 

4.5 

+ = 50. oj 
/ 

1’ 

/I 
I 

4.0 

8x 3-5 

3.0 

2.5 

2.c 

I.5 

1.C 

d 0.2 0.4 0.6 0.8 I.0 

X 

FIG. 6. Effect of the parameter @ and radiation on the plate 
temperature in laminar flow. 

Laminar flow 

Y = 0.000333 

Figure 4 shows the plate temperature for a wide 
range of thermal conductivity parameter N. 
It can be seen that the higher values of N bring 
down the plate temperature appreciably at 
smaller values of X, but with subsequent 
increase in X the effect of N continuously 
decreases. For a 0,254 mm (Y = 090166) thick 
copper plate (N - 1724.3) neglecting the ther- 
mal conductivity would cause an error of 62 
per cent in the plate temperature at a location 
X = 0.05 from the leading edge. For an~nfinitely 
large value of thermal conductivity, 6x would 
approach zero, i.e. 6, would tend to a constant 

Thus, in order to study the effect of thermal 
conductivity, numerical determination of iiz 
becomes very critical. Because of the constant 
internal energy generation in the plate, its 
temperature has to increase with X. This means 
that ox can never be negative, its value decreasing 
with ?c and becoming equal to zero in the 
extreme case. Therefore 8X cannot have a point 
of inflection and its value has to approach close 
to zero at X = 1. The usual method of deter- 
mining ex by differentiating the curve fit of the 
temperature profile is susceptible to some 
errors, which in turn may cause errors in the 
calculated temperature. This effect is shown in 
Fig. 5 by a solid curve in the range X = 0.7-1.0. 
Hence fix is forced to follow a physically more 
realistic profile as shown by the dashed line in 
Fig. 5. 

Figure 6 shows the effect of changing the para- 
meter Q, and also the plate temperature with and 
without inclusion of the radiative transfer term. 
Changing @ essentially means changing either 

K,/KfN=O 425 

66.215 
662.15 
I724,3 

3446.6 

5 172.9 

6621.5 

FIG. 7. Effection of the parameter N and radiation on the 
olate temnerature in laminar flow. value. 



DETERMINATION OF PLATE TEMPERATURE 2065 

internal energy generation or the plate thickness 
at low thermal conductivity. Thus, as would be 
expected, an increase in @ increases the plate 
temperature as shown in Fig. 6. This figure also 
illustrates that radiation becomes more and 
more important with the increase in the plate 
temperature, which is caused by the higher 
volumetric energy input. 

Turbulent flow 

Y = 0:000333 

‘$ = 14.61 
1.4, Cf = 2.88 x IO+ Without radiation 

86.215 
862.15 
1724.3 

3448.6 

5 172.9 

8621.5 

l.Of_, 

0 0.2 0.4 a6 0.8 I.0 

X 

FIG. 8. Effect of the parameter N and radiation on the plate 
temperature in turbulent flow. 

Figures 7 and 8 present the relative ~~~an~ 
of conduction and radiation heat transfer for 
laminar and turbulent flows, respectively. The 
maximum error caused by neglecting the con- 
duction heat transfer in a O-0508 mm thick plate 
with N = 1724.3 is about 10 per cent, as shown 
in Fig. 7. For the same volumetric energy 
generation, corresponding error for a 0254 mm 
thick plate from Fig. 4, is 62 per cent. Absence of 

radiation could mean a maximum increase of 
about 435 per cent in the plate temperature in a 
laminar flow, the maximum increase occurring 
at the trailing edge of the plate when N = 86-215. 
The corresponding increase in a turbulent flow 
flow is only about 555 per cent. This emphasizes 
the relative importance of radiative heat transfer 
in laminar and turbulent flows. Clearly, in tur- 
bulent flow convective heat transfer is much 
more dominant. Cess [6] has also reported that 
above a turbulent Reynolds number of 3.5 x lo5 
the error caused by neglecting radiation effects 
would be less than 5 per cent. 

4. coNcLusIoNs 

The present work presents solutions for the 
plate temperature, where conduction heat trans- 
fer along the length of the plate becomes 
important. These are the cases of plates having 
a higher value of thermal conducti~ty and 
certain cases of thicker plates, where the 
assumption of constant temperature across 
the plate thickness can be maintained. This 
paper also gives solutions for integral equations 
which contain a delay factor of the more general 

type El = GZVI-* in the kernel, though 
these solutions show little difference over the 
results using the delay factor of the type 
[l - (Z/X)]-* as done by Sparrow and Lin. 

The present results obtained by using the 
method of iterations, compare within 5 per cent 
of the results of Sparrow and Lin. Due to a 
sharp decrease in the value of convective heat 
transfer coefficient on moving away from the 
leading edge of the plate, there has to be a sharp 
increase in the plate temperature, unlike the 
plots of Sparrow and Lin. The relations given 
by Cess for plate temperature are not physically 
consistent over all ranges of parameters, as they 
do not give a constant increase (or an asymptotic 
approach to a constant value) in temperature in 
some cases. The neglect of radiation heat 
transfer in turbulent flow does not cause as 
severe an error as in laminar flow, a phenomenon 
also shown by Cess. 

E 
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DETERMINATION DE LA TEMPERATURE D’UNE PLAQUE DANS LE CAS D’ECHANGE DE 
CHALEUR COMBINE PAR CONDUCTION, CONVECTION ET RAYONNEMENT 

R&u&On a r&.olu numtriquement par la mtthode itCrative l’kquation intkgro-differentielle singuliere 
pour la temp&ature d’une plaque plane avec une g&ration d’Cnergie interne et un fluide qui s’tcoule 
sur I’une de ses faces. Les rtsultats prksentks se comparent bien B ceux de Sparrow et Lin, sauf pour la 
region du bord d’attaque de la plaque. On voit aussi que les relations donntes par Cess pour des problkmes 
similaires risquent de ne pas donner de solutions convergentes dans tous les cas. L’importance de la 
conduction dans une plaque & conductivitk thermique 6levCe et du rayonnement dans le cas d’kcoulement 

similaire a Ctk dkmontrte. 

BESTIMMUNG DER PLATTENTEMPERATUR IM FALL DES KOMBINIERTEN 
WARME-AUSTAUSCHS DURCH LEITUNG, KONVEKTION UND STRAHLUNG. 

Zusammenfm Die Integro-Differentialgleichung fti die Temperatur einer ebenen Platte mit inneren 
WPrmequellen, wobei ein Fluid tiber eine Plattenfliiche str8mt, wird numerisch durch Iteration gel&t. Die 
Ergebnisse lassen s&h gut mit denen von Sparrow und Lin vergleichen, aul3er fiir den Plattenanfang. Man 
sieht such, daD die Gleichung von Cess fir iihnliche Probleme nicht fii alle Fiille iibereinstimmende 
Liisungen ergibt. Auch wurde die Wichtigkeit der Leitung in einer Platte von hoher thermischer 

Leitfahigkeit und die der Strahlung im Fall einer laminaren Striimung gezeigt. 

OUPEAEJIEHIJE TEMKIEPATYPbI IIJIACTkiHbI B CJIY4AE CJIOXHOFO 
TEl-IJIOOBMEHA TElUIOIIPOBO~HOCTbK), ICOHBEKIJtlEm B PAjJ%IAqWEm 

hmmqmi-MeToAoM mepa@i npoeegetxo wcnemoe pememe cn~rynap~oro AKTerpo- 
@n$epeK~aanbKoro ypaBHenKfl gnrr TenfnpaTypbI nnacTnKbl c BnyTpeKKHM HCTO~HEIK~M 
aaeprna np~lo6TeKaHIIH ee c OAHOfi CTOPOH~I. PeaynbTaTbI aTO& pa6oTn XOpomo CornacyIoTcfi 
C AaHHBMIl CnappOy H &Ha 3a BCKJlH)%HAeM IIepefiHefi KpOMKEl IIJlaCTHHbl. yCTaHOBj%.?HO, 
9~0 cooTKomeHBK, npnBexeKKbIe CeCCOM gnu aaAarr TaKoro Tuna ne Bcerga AaIoT cxo~lm~aec~ 
peIIK?HuIH. nOKaaaHO,9TO AJIH IiJIaCTHHhl C BbICOKIlM KOa@&i~H’3HTOM TeIIJIOIIpOBO~OCTH M np&i 
BansignH ManyseKan B caysaflx naMsfKapBor0 06TeKaHKn TellJlOnpOBO~HOCTb HrpaeT 

Cy~eCTBeHHyH, pOJIb. 


